ParSeNet: A Parametric
Surface Fitting Network for 3D
Point Clouds

Ende Shen

Brief Summarization

- End-to-end differentiable deep network,
- 3D point cloud => parametric surface patches (B-spline & basic geometric
primitives)

| ~ _ParseNet

1010/ @ sl

ParSeNet decomposes point clouds (top row) into collections of seamlessly assembled parametric surface patches including B-spline
patches (bottom row). On the right, a shape is edited using the inferred parametrization.

Nl
.
¥
\
T
P -
Nk,
-

SR

et

Motivation

- 3D point clouds can be rapidly acquired using 3D sensors

- In computer-aided design and modeling, designers often model shapes by
constructing several non-overlapping patches placed seamlessly

- Previous work lack the expressivity of multiple patches of B-spline

Pipeline

—_—
Decomposition

_

Fitting

o o @ =
Predicted Segments B-Spline Cylinder Cone

Post Process
Optimization -

|

Points [+ Normals]
w .
Skip - SplineNet > :
Connections N x 6 Point Primitive / R :
Input Type _// > 5
Cone :
1 Embeddln Shift
¥V oNxios RSN Cylinder
Fitting
u Graph Layer t FC Layer >
L J Mg J L
R 4 RS R
Decomposition Module ! Fitting Module Post Process Optimization

Fig.2: Overview of PARSENET pipeline. (1) The decomposition module
(Section 3.1) takes a 3D point cloud (with optional normals) and decomposes
it into segments labeled by primitive type. (2) The fitting module (Section 3.2)
predicts parameters of a primitive that best approximates each segment. It
includes a novel SPLINENET to fit B-spline patches. The two modules are jointly
trained end-to-end. An optional postprocess module (Section 3.3) refines the

output.

Decomposition module

- Embedding network.
- edge convolution layers (EdgeConv) from DGCNN
- neighborhoods are dynamically defined via nearest neighbors
- stack 3 EdgeConv layers, each extracting a 256-D representation per point, also extract a
global 1024-D representation for the whole point cloud
- Passes through FC & Relu then normalized to unit length (128-D)

/ Ji2

. " X @ _ec. ‘Jz’ ' =

\ / EdgeCony Ji3 K
—>
./ 5 ./ X’ i
i
. ;
ij; e X.
xfu X_/N i ijis Ji1
X X

Decomposition module

- Mean-shift clustering
- Advantage: does not require the target number of clusters as input
- “Akernel is a fancy mathematical word for a weighting function generally used in convolution.
There are many different types of kernels, but the most popular one is the Gaussian kernel.
Adding up all of the individual kernels generates a probability surface example density
function. Depending on the kernel bandwidth parameter used, the resultant density function
will vary.”

Bandwidth Value: 2

15

N
2"t = Zyg 2, y1) /O 92", y;)) -

j=1

where the pairwise similarities g(zl ,yJ) are based on a von Mises-Fisher kernel
with bandwidth B: g(z:,y;) = exp(zly;/8?) (iteration index dropped for clarity).

Points are assigned to segments based on their nearest cluster center. The point
memberships are stored in a matrix W, where Wi, k] = 1 means point 7 belongs
to segment k, and 0 means otherwise. The memberships are passed to the fitting

—h
=10 =5 0 5 10 15 20

Decomposition module

- Segment Classification
- From per-point representation to FC layers and ReLUs, then softmax for a per-point probability
to determine patch type
- Then majority voting over the cluster points

Fitting module

- Basic primitives
- Least squares fitting: center and radius for spheres; normal and offset for planes; center,
direction and radius for cylinders; and apex, direction and angle for cones
- B-Splines
- We propose a neural network SplineNet, that inputs points of a segment, and outputs a fixed
size control-point grid.

¢ = max (Wi, k] - ¢;).

- From theta, to two FC Layers with ReLU to 20x20 control points (unrolled into a 1200-D output
vector), trick: if number of points is small for a segment, upsample (nearest neighbor) to 1600

Some results

Input

Optim

Refine

GT

Post-processing module

However, patches might not entirely cover the input point cloud, and boundaries
between patches are not necessarily well-aligned. Further, the resolution of the
initial control point grid (20 x 20) can be further adjusted to match the desired
surface resolution.

Optimization: create a grid of 40 x 40 points, tessellate into quads, maximal
matching between the quad vertices and the input points of the segment, using
the Hungarian algorithm with L2 distance costs. then perform an
as-rigid-as-possible (ARAP) deformation, selected vertices (pivots) achieve targets
position, while promoting locally rigid transformations in one-ring neighborhoods

Post-processing module

Refinement of B-spline control points.

After the above optimization, we again perform a maximal matching between the
quad vertices and the input points of the segment. As a result, the input segment
points acquire 2D parameter values in the patch’s UV parameter space, which can
be used to re-fit any other grid of control points [15]. In our case, we iteratively
upsample the control point grid by a factor of 2 until a fitting tolerance, measured
via Chamfer distance, is achieved.

Training - Loss functions

1. Embedding loss. Given a triplet of points (a, b, ¢), we use the triplet loss to
learn the embeddings

1
Le'm,b = Z @ Z Eemb(a,b, C).

SeD (a,b,c)ETs

What is triplet loss?

£ (A, P,N) = max(|| €(4) - £(P)|]* = | £(4) - £M)|* + ,0)

where A is an anchor input, P is a positive input of the same class as A, N is a negative input of a
different class from A, « is a margin between positive and negative pairs, and f is an embedding.

Training - Loss functions

2. Segment classification loss: cross entropy loss

3. Control point regression loss. used to train SplineNet. Note: reconstruction loss
should be invariant to flips or swaps of control points grid in u and v directions.

1 1
Lo = 0 fgw] 2. 6] 2R ICx — w(COIF Q

SeD sRES®)

where S©®) is the set of B-spline patches from shape S, Cj, is the predicted control
point grid for patch sy, (|Cx| = 400 control points), 7(Cy) is permutations of the
ground-truth control points from the set IT of 8 permutations for open and 160
permutations for closed B-spline.

Training - Loss functions

4. Laplacian loss. specific to B-Splines using SplineNet

L= 3 sora L O 6 — LEIE (6)

speS() ryEsy
where £(-) is the Laplace operator on patch points, and M = 1600 point samples.
5. Patch distance loss.

Ldist Z Z M Z D I‘n,Sk (7)
Sk

SeD S neEsy,

where Ks is the number of predicted patches for shape S, M;, is number of
sampled points r,, from ground patch §;, D?(r,,,s;) is the squared distance from
r,, to the predicted primitive patch surface si. These distances can be computed

analytically for basic primitives [12]. For B-splines, we use an approximation
based on Chamfer distance between sample points.

Training - Training procedure

We first pre-train the networks of the decomposition module, using Lemb + Lclass.

then pre-train the SplineNet using SplineDataset for control point prediction
exclusively on B-spline patches using Lcp + Llap + Ldist.

We then jointly train the decomposition and fitting module end-to-end with all the
losses. To allow backpropagation from the primitives and B-splines fitting to the
embedding network, the mean shift clustering is implemented as a recurrent
module

Experiments - Evaluation

Segmentation mean IOU
of the predicted segments with ground truth segments. Given the ground-truth

point-to-segment membersh}gs W for an input point cloud, and the predicted
ones W, we measure: % > ,_,; JOU(W[:, k], A(W[:, k]))

Segment labeling IOU

% Ele z [tk = fk] where 1 and #;, is the predicted and ground truth primitive
type respectively for k" segment and Z is an indicator function.

Experiments - Evaluation

Residual error: measures the average distance of input points from the predicted
primitives following

predicted primitives following [12]: Lg;s; = Zszl —N—}; Zneék D(r,,si) where
K is the number of segments, M} is number of sampled points r,, from ground
patch 8x, D(r,,sk) is the distance of r,, from predicted primitive patch sj.

P-coverage: the coverage of predicted surface by the input surface

& 2L I [mingC, D(pi,sk) < €] (€ =0.01).

Experiments - Against other methods

Method Input|seg iou(label iou|res (all)|res (geom) res (spline) P cover
NN p | 54.10 | 6L.10 - - - -
RANSAC p+n | 67.21 - 0.0220 0.0220 - 83.40
SPFN p 47.38 68.92 0.0238 0.0270 0.0100 86.66
SPFN p+n | 69.01 79.94 0.0212 0.0240 0.0136 88.40
PARSENET p 71.32 79.61 0.0150 0.0160 0.0090 87.00
PARSENET p+n | 81.20 87.50 0.0120 0.0123 0.0077 92.00
PARSENET + e2e p+n | 82.14 88.60 0.0118 0.0120 0.0076 92.30
PARSENET + e2e + opt| p+n | 82.14 | 88.60 | 0.0111 0.0120 0.0068 92.97

Table 1: Primitive fitting on ABCPARTSDATASET. We compare PARSENET
with nearest neighbor (NN), RANSAC [16], and SPFN [12]. We show results with
points (p) and points and normals (p+n) as input. The last two rows shows our
method with end-to-end training and post-process optimization. We report ‘seg
iou’ and ‘label iou’ metric for segmentation task. We report the residual error
(res) on all, geometric and spline primitives, and the coverage metric for fitting.

Experiments - Ablation

Loss Open splines Closed splines
cp | dist | lap | opt | w/ ups | w/o ups | w/ ups | w/o ups
v 2.04 2.00 5.04 3.93
v | v 1.96 2.00 4.9 3.60
v | v v 1.68 1.59 3.74 3.29
vV |V v v 0.92 0.87 0.63 0.81

Table 2: Ablation study for B-spline fitting. The error is measured using
Chamfer Distance (CD is scaled by 100). The acronyms “cp”: control-points
regression loss, “dist” means patch distance loss, and “lap” means Laplacian
loss. We also include the effect of post-processing optimization “opt”. We report
performance with and without upsampling (“ups”) for open and closed B-splines.

Experiments - Qualitative Results

SPFN

ParseNet

ParseNet

Fig.4: Given the input point clouds with normals of the first row, we show
surfaces produced by SPFN [12] (second row), PARSENET without post-processing
optimization (third row), and full PARSENET including optimization (fourth row).
The last row shows the ground-truth surfaces [rom our ABCPARTSDATASET.

Conclusion

marries 3D deep learning with CAD modeling practices. Modelers can refine
our results based on standard CAD modeling operations.

Limitations: our method often makes mistakes for small parts, mainly because
clustering merges them with bigger patches. In high-curvature areas, due to
sparse sampling, ParSeNet may produce more segments than ground-truth.
Producing seamless boundaries is still a challenge due to noise and sparsity
in our point sets.

