
ParSeNet: A Parametric 
Surface Fitting Network for 3D 

Point Clouds
Ende Shen



Brief Summarization

- End-to-end differentiable deep network,
- 3D point cloud => parametric surface patches (B-spline & basic geometric 

primitives) 



Motivation

- 3D point clouds can be rapidly acquired using 3D sensors 
- In computer-aided design and modeling, designers often model shapes by 

constructing several non-overlapping patches placed seamlessly
- Previous work lack the expressivity of multiple patches of B-spline



Pipeline



Decomposition module

- Embedding network.
- edge convolution layers (EdgeConv) from DGCNN
- neighborhoods are dynamically defined via nearest neighbors
- stack 3 EdgeConv layers, each extracting a 256-D representation per point, also extract a 

global 1024-D representation for the whole point cloud
- Passes through FC & Relu then normalized to unit length (128-D)



Decomposition module

- Mean-shift clustering
- Advantage: does not require the target number of clusters as input
- “A kernel is a fancy mathematical word for a weighting function generally used in convolution. 

There are many different types of kernels, but the most popular one is the Gaussian kernel. 
Adding up all of the individual kernels generates a probability surface example density 
function. Depending on the kernel bandwidth parameter used, the resultant density function 
will vary.”



Decomposition module

- Segment Classification
- From per-point representation to FC layers and ReLUs, then softmax for a per-point probability 

to determine patch type
- Then majority voting over the cluster points



Fitting module

- Basic primitives
- Least squares fitting: center and radius for spheres; normal and offset for planes; center, 

direction and radius for cylinders; and apex, direction and angle for cones
- B-Splines

- We propose a neural network SplineNet, that inputs points of a segment, and outputs a fixed 
size control-point grid.

-
- A
- From theta, to two FC Layers with ReLU to 20x20 control points (unrolled into a 1200-D output 

vector), trick: if number of points is small for a segment, upsample (nearest neighbor) to 1600



Some results



Post-processing module

However, patches might not entirely cover the input point cloud, and boundaries 
between patches are not necessarily well-aligned. Further, the resolution of the 
initial control point grid (20 × 20) can be further adjusted to match the desired 
surface resolution.

Optimization: create a grid of 40 × 40 points, tessellate into quads, maximal 
matching between the quad vertices and the input points of the segment, using 
the Hungarian algorithm with L2 distance costs. then perform an 
as-rigid-as-possible (ARAP) deformation, selected vertices (pivots) achieve targets 
position, while promoting locally rigid transformations in one-ring neighborhoods



Post-processing module

Refinement of B-spline control points.

After the above optimization, we again perform a maximal matching between the 
quad vertices and the input points of the segment. As a result, the input segment 
points acquire 2D parameter values in the patch’s UV parameter space, which can 
be used to re-fit any other grid of control points [15]. In our case, we iteratively 
upsample the control point grid by a factor of 2 until a fitting tolerance, measured 
via Chamfer distance, is achieved.



Training - Loss functions

1. Embedding loss. Given a triplet of points (a, b, c), we use the triplet loss to 
learn the embeddings

What is triplet loss?



Training - Loss functions

2. Segment classification loss: cross entropy loss

3. Control point regression loss. used to train SplineNet. Note: reconstruction loss 
should be invariant to flips or swaps of control points grid in u and v directions.



Training - Loss functions

4. Laplacian loss. specific to B-Splines using SplineNet

5. Patch distance loss.



Training - Training procedure

We first pre-train the networks of the decomposition module, using Lemb + Lclass.

then pre-train the SplineNet using SplineDataset for control point prediction 
exclusively on B-spline patches using Lcp + Llap + Ldist.

We then jointly train the decomposition and fitting module end-to-end with all the 
losses. To allow backpropagation from the primitives and B-splines fitting to the 
embedding network, the mean shift clustering is implemented as a recurrent 
module



Experiments - Evaluation

Segmentation mean IOU

Segment labeling IOU



Experiments - Evaluation

Residual error: measures the average distance of input points from the predicted 
primitives following

P-coverage: the coverage of predicted surface by the input surface



Experiments - Against other methods



Experiments - Ablation



Experiments - Qualitative Results



Conclusion

- marries 3D deep learning with CAD modeling practices. Modelers can refine 
our results based on standard CAD modeling operations.

- Limitations: our method often makes mistakes for small parts, mainly because 
clustering merges them with bigger patches. In high-curvature areas, due to 
sparse sampling, ParSeNet may produce more segments than ground-truth. 
Producing seamless boundaries is still a challenge due to noise and sparsity 
in our point sets.


